众所周知,物质是由分子和原子组成的,但是它们不是静止的,都在快速地运动着,这是微观物质的一个非常重要的基本属性。飞秒激光器的出现使人类diyi次在原子和电子的层面上观察到这一超快运动过程。基于这些科学上的发现,飞秒激光器的应用场景在物理学、生物学、化学控制反应、光通讯等领域中得到了广泛应用。由于飞秒激光器具有快速和高分辨率特性,它在病变早期诊断、医学成象和生物活体检测、外科医疗及超小型卫星的制造上都有其独特的优点和不可替代的作用。
在材料加工领域,飞秒激光器被认为是优于纳秒激光器的新工具,飞秒秒脉冲的使用减少了材料的热损伤,飞秒激光器频率与能量的关系从而使激光能够更广泛地渗透到制造业领域,例如用于打标、钻孔和切割。
尽管如此,由于飞秒激光技术的特性及其对材料加工的显著改进,使得飞秒激光器在许多应用中已经成为“必须”的工具。IMRA America公司在2002年首次生产出用于材料加工的微焦量级的商业化飞秒FCPA激光器。[2]基于光纤技术,FCPA成为构建高峰值功率、高平均功率和高脉冲能量飞秒激光器的常用手段。
大体上说,飞秒脉冲激光器对热影响区(HAZ)减少的水平,是其他激光器无法比拟的。接近手术水平地将能量输送到工件,为FCPA在精密消费电子零件制造(包括显示器行业)领域的应用打开了大门。
飞秒激光器的应用场景在切割硅晶圆方面的应用一直备受关注,因为飞秒激光脉冲的高峰值功率,可用于消融硅晶圆和其他沉积在硅晶圆表面的材料,并且对相邻组件的影响或热损伤最小。通常,这些硅晶圆预先配置了切割通道。这些通道也用于芯片分割之前的探测和测试。因此,切割通道填充有传感器和探测点。在这种情况下,飞秒光束用于去除那些附加的表面层,同时支持硅晶圆的隐形切割。由于飞秒激光脉冲在坚硬、透明蓝宝石衬底中独特的强非线性吸收,飞秒激光器也是从蓝宝石晶圆中分离出高亮度LED芯片的理想选择。
飞秒激光器为了能产生激光,就必须使受激辐射强度超过受激吸收强度,即使高能态的原子数多于低能态的原子数。这种不同于平衡态粒子分布的状态称为粒子数反转分布。也就是,飞秒激光器要产生激光,必须实现粒子数反转分布。
粒子数反转分布是产生激光的一个必要条件,而要实现粒子数反转分布和产生激光还必须满足三个条件:
①要有能形成粒子数反转分布的物质,即激活介质(这类物质具有合适的能级结构);
②要有必要的能量输入系统给激活介质能量,使尽可能多的原子吸收能量后跃迁到高能态以实现粒子数反转,这一系统称作激励能源(或泵浦源);
③要有光的正反馈系统——光学谐振腔,当一定频率的光辐射通过粒子数反转分布的激活介质时,受激辐射的光子数多于受激吸收的光子数可使光辐射得到放大,要使这种光放大并且以一个副长光子感应产生一个受激发射光子的单次过程为主,还能形成高单色性高方向性高相干性和高亮度性的光放大,必须使用光学谐振腔。
因此,常用飞秒激光器由三部分组成:激活介质、激励能源、光学谐振腔。